Collagen morphology assessed by textural image analysis

SHARE THIS ON:

Research Area: Cell Biology, Tissue Microstructure, Biophotonics and Image Analysis

Authors: Leila B. Mostaço-Guidolin, Alex C.-T. Ko, Fei Wang, Bo Xiang, Mark Hewko, Ganghong Tian, Arkady Major, Masashi Shiomi & Michael G. Sowa

In this study we present an image analysis methodology capable of quantifying morphological changes in tissue collagen fibril organization caused by pathological conditions. Texture analysis based on first-order statistics (FOS) and second-order statistics parameters such as gray-level co-occurrence matrices (GLCM) was explored to extract second-harmonic generation (SHG) image features that are associated with the structural and biochemical changes of tissue collagen networks. Based on these extracted quantitative parameters, multi-group classification of SHG images was performed. With combined FOS and GLCM texture values, we achieved reliable classification of SHG collagen images acquired from atherosclerosis arteries with >90% accuracy, sensitivity, and specificity. The proposed methodology can be applied to a wide range of conditions involving collagen remodeling, such as in skin disorders, different types of fibrosis, and muscular-skeletal diseases affecting ligaments and cartilage.

Related Articles​

Il-13 -driven-tuft-cell-hyperplasia.
Publication

BMP signaling in the intestinal epithelium drives a critical feedback loop to restrain IL-13-driven tuft cell hyperplasia

Although Helminth infections are prevalent throughout the world, they are particular a health...

Learn More
Intestinal epithelium cells close-up.
Publication

LSD1 represses a neonatal/reparative gene program in adult intestinal epithelium

After birth, the epithelium that lines our gut transitions (or matures) so that it can deal...

Learn More
Publication

Targeting mRNA binding proteins to respond to stress responses

The paper establishes the phosphorylation of heterogeneous nuclear ribonucleoprotein A1...

Learn More